618 research outputs found

    Visuo-vestibular interaction in the reconstruction of travelled trajectories

    Get PDF
    We recently published a study of the reconstruction of passively travelled trajectories from optic flow. Perception was prone to illusions in a number of conditions, and not always veridical in the others. Part of the illusionary reconstructed trajectories could be explained by assuming that subjects base their reconstruction on the ego-motion percept built during the stimulus' initial moments . In the current paper, we test this hypothesis using a novel paradigm: if the final reconstruction is governed by the initial percept, providing additional, extra-retinal information that modifies the initial percept should predictably alter the final reconstruction. The extra-retinal stimulus was tuned to supplement the information that was under-represented or ambiguous in the optic flow: the subjects were physically displaced or rotated at the onset of the visual stimulus. A highly asymmetric velocity profile (high acceleration, very low deceleration) was used. Subjects were required to guide an input device (in the form of a model vehicle; we measured position and orientation) along the perceived trajectory. We show for the first time that a vestibular stimulus of short duration can influence the perception of a much longer lasting visual stimulus. Perception of the ego-motion translation component in the visual stimulus was improved by a linear physical displacement: perception of the ego-motion rotation component by a physical rotation. This led to a more veridical reconstruction in some conditions, but to a less veridical reconstruction in other conditions

    Reconstructing passively travelled manoeuvres: Visuo-vestibular interactions.

    Get PDF
    We recently published a study of the reconstruction of passively travelled trajectories from optic flow. Perception was prone to illusions in a number of conditions, and not always veridical in the other conditions. Part of the illusionary reconstructed trajectories could be explained if we assume that the subjects based their reconstruction on the ego-motion percept obtained during the stimulus' initial moments. In the current paper, we test this hypothesis using a novel paradigm. If indeed the final reconstruction is governed by the initial percept, then additional, extra-retinal information that modifies the initial percept should predictably alter the final reconstruction. We supplied extra-retinal stimuli tuned to supplement the information that was underrepresented or ambiguous in the optic flow: the subjects were physically displaced or rotated at the onset of the visual stimulus. A highly asymmetric velocity profile (high acceleration, very low deceleration) was used. Subjects were required to guide an input device (in the form of a model vehicle; we measured position and orientation) along the perceived trajectory. We show for the first time that a vestibular stimulus of short duration can influence the perception of a much longer lasting visual stimulus. Perception of the ego-motion translation component in the visual stimulus was improved by a linear physical displacement; perception of the ego-motion rotation component by a physical rotation. This led to a more veridical reconstruction in some conditions, but it could also lead to less veridical reconstructions in other conditions

    Visuo-vestibular interaction in the reconstruction of travelled trajectories

    Get PDF
    We recently published a study of the reconstruction of passively travelled trajectories from optic flow. Perception was prone to illusions in a number of conditions, and not always veridical in the others. Part of the illusionary reconstructed trajectories could be explained by assuming that subjects base their reconstruction on the ego-motion percept built during the stimulus' initial moments . In the current paper, we test this hypothesis using a novel paradigm: if the final reconstruction is governed by the initial percept, providing additional, extra-retinal information that modifies the initial percept should predictably alter the final reconstruction. The extra-retinal stimulus was tuned to supplement the information that was under-represented or ambiguous in the optic flow: the subjects were physically displaced or rotated at the onset of the visual stimulus. A highly asymmetric velocity profile (high acceleration, very low deceleration) was used. Subjects were required to guide an input device (in the form of a model vehicle; we measured position and orientation) along the perceived trajectory. We show for the first time that a vestibular stimulus of short duration can influence the perception of a much longer lasting visual stimulus. Perception of the ego-motion translation component in the visual stimulus was improved by a linear physical displacement: perception of the ego-motion rotation component by a physical rotation. This led to a more veridical reconstruction in some conditions, but to a less veridical reconstruction in other conditions

    Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots

    Get PDF
    International audienceIn many walking, running, flying, and swimming animals, including mammals, reptiles, and birds, the vestibular system plays a central role for verticality estimation and is often associated with a head sta-bilisation (in rotation) behaviour. Head stabilisation, in turn, subserves gaze stabilisation, postural control, visual-vestibular information fusion and spatial awareness via the active establishment of a quasi-inertial frame of reference. Head stabilisation helps animals to cope with the computational consequences of angular movements that complicate the reliable estimation of the vertical direction. We suggest that this strategy could also benefit free-moving robotic systems, such as locomoting humanoid robots, which are typically equipped with inertial measurements units. Free-moving robotic systems could gain the full benefits of inertial measurements if the measurement units are placed on independently orientable platforms, such as a human-like heads. We illustrate these benefits by analysing recent humanoid robots design and control approaches

    Assessing morphology and function of the semicircular duct system: Introducing new in-situ visualization and software toolbox

    Get PDF
    International audienceThe semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies

    Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection

    Get PDF
    International audienceAction selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multidisciplinary approach at the convergence of neuro-science, dynamical systems theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neu-ral projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties , when compared with a simple if-then-else decision rule

    Longitudinal and Sex Measurement Invariance of the Affective Neuroscience Personality Scales

    Get PDF
    The Affective Neuroscience Personality Scales (ANPS) is a personality instrument based on six evolutionary-related brain systems that are at the foundation of human emotions and behaviors: SEEKING, CARING, PLAYFULNESS, FEAR, ANGER, and SADNESS. We sought to assess for the short and long versions of the ANPS: (a) the longitudinal measurement invariance and long-term (4-year) stability and (b) the sex measurement invariance. Using data from a Canadian cohort (N = 518), we used single-group confirmatory factor analysis to assess longitudinal invariance and multiple-group confirmatory factor analysis to assess sex invariance, according to a five-step approach evaluating five invariance levels (configural, metric, scalar, residual, and complete). Results supported full longitudinal invariance for both versions for all invariance levels. Partial residual invariance was supported for sex invariance. The long-term stability of both versions was good to excellent. Implications for personality assessment and ANPS development are discussed

    Neural correlates of mentalizing-related computations during strategic interactions in humans

    Get PDF
    Competing successfully against an intelligent adversary requires the ability to mentalize an opponent's state of mind to anticipate his/her future behavior. Although much is known about what brain regions are activated during mentalizing, the question of how this function is implemented has received little attention to date. Here we formulated a computational model describing the capacity to mentalize in games. We scanned human subjects with functional MRI while they participated in a simple two-player strategy game and correlated our model against the functional MRI data. Different model components captured activity in distinct parts of the mentalizing network. While medial prefrontal cortex tracked an individual's expectations given the degree of model-predicted influence, posterior superior temporal sulcus was found to correspond to an influence update signal, capturing the difference between expected and actual influence exerted. These results suggest dissociable contributions of different parts of the mentalizing network to the computations underlying higher-order strategizing in humans

    Idiothetic Verticality Estimation Through Head Stabilization Strategy

    Get PDF
    International audienceThe knowledge of the gravitational vertical is fundamental for the autonomous control of humanoids and other free-moving robotic systems such as rovers and drones. This article deals with the hypothesis that the so-called 'head stabilization strategy' observed in humans and animals facilitates the estimation of the true vertical from inertial sensing only. This problem is difficult because inertial measurements respond to a combination of gravity and fictitious forces that are hard to disentangle. From simulations and experiments, we found that the angular stabilization of a platform bearing inertial sensors enables the application of the separation principle. This principle, which permits one to design estimators and controllers independently from each other, typically applies to linear systems, but rarely to nonlinear systems. We found empirically that, given inertial measurements, the angular regulation of a platform results in a system that is stable and robust and which provides true vertical estimates as a byproduct of the feedback. We conclude that angularly stabilized inertial measurement platforms could liberate robots from ground-based measurements for postural control, locomotion, and other functions, leading to a true idiothetic sensing modality, that is, not based on any external reference but the gravity field
    corecore